Return Styles: Pseud0ch, Terminal, Valhalla, NES, Geocities, Blue Moon. Entire thread

vAx2

Name: Anonymous 2026-01-21 20:48

vAx2

Name: Anonymous 2026-01-21 20:48

o fractal_spike_obelisk

# ============================
# VERTICES
# ============================

# Base obelisk shape (tapered)
v 0 0 0
v -48 0 -48
v 48 0 -48
v 48 0 48
v -48 0 48

v 0 256 0
v -24 256 -24
v 24 256 -24
v 24 256 24
v -24 256 24

# First-layer spike tips
v -60 128 -60
v 60 128 -60
v 60 128 60
v -60 128 60

v 0 300 -40
v 40 300 0
v 0 300 40
v -40 300 0

# Second-layer recursive spikes
v -90 180 -90
v 90 180 -90
v 90 180 90
v -90 180 90

v 0 340 -60
v 60 340 0
v 0 340 60
v -60 340 0

# ============================
# UVS
# ============================

vt 0.0 0.0
vt 1.0 0.0
vt 1.0 1.0
vt 0.0 1.0

# ============================
# NORMALS
# ============================

vn 0 1 0
vn 0 -1 0
vn 1 0 0
vn -1 0 0
vn 0 0 1
vn 0 0 -1

# ============================
# FACES (triangulated)
# ============================

# Base
f 2/1/2 3/2/2 1/3/2
f 3/1/2 4/2/2 1/3/2
f 4/1/2 5/2/2 1/3/2
f 5/1/2 2/2/2 1/3/2

# Top
f 6/1/1 7/2/1 8/3/1
f 6/1/1 8/2/1 9/3/1
f 6/1/1 9/2/1 10/3/1
f 6/1/1 10/2/1 7/3/1

# Mid spikes
f 2/1/3 7/2/3 11/3/3
f 3/1/3 8/2/3 12/3/3
f 4/1/3 9/2/3 13/3/3
f 5/1/3 10/2/3 14/3/3

# Upper spikes
f 7/1/4 11/2/4 19/3/4
f 8/1/4 12/2/4 20/3/4
f 9/1/4 13/2/4 21/3/4
f 10/1/4 14/2/4 22/3/4

# Top spike ring
f 6/1/5 15/2/5 16/3/5
f 6/1/5 16/2/5 17/3/5
f 6/1/5 17/2/5 18/3/5
f 6/1/5 18/2/5 15/3/5

# Recursive top spikes
f 15/1/6 23/2/6 16/3/6
f 16/1/6 24/2/6 17/3/6
f 17/1/6 25/2/6 18/3/6
f 18/1/6 26/2/6 15/3/6

Name: Anonymous 2026-01-21 20:50

o chaotic_shard_cluster

# ============================
# VERTICES
# ============================

# Central core
v 0 0 0
v 20 10 -10
v -15 12 -5
v 10 -8 15
v -12 -10 18
v 18 -6 -14

# Outer shards (first layer)
v 40 20 -20
v -35 25 -10
v 25 -20 35
v -30 -25 40
v 45 -15 -35
v -40 -18 -30

# Outer shards (second layer, recursive)
v 70 40 -40
v -60 45 -20
v 50 -35 70
v -55 -40 75
v 80 -30 -60
v -70 -35 -55

# Floating micro‑shards
v 10 50 -5
v -15 55 10
v 20 -45 5
v -25 -50 -10

# ============================
# UVS
# ============================

vt 0.0 0.0
vt 1.0 0.0
vt 1.0 1.0
vt 0.0 1.0

# ============================
# NORMALS
# ============================

vn 0 1 0
vn 0 -1 0
vn 1 0 0
vn -1 0 0
vn 0 0 1
vn 0 0 -1

# ============================
# FACES (triangulated)
# ============================

# Core tetrahedral cluster
f 1/1/1 2/2/1 3/3/1
f 1/1/1 3/2/1 4/3/1
f 1/1/1 4/2/1 5/3/1
f 1/1/1 5/2/1 6/3/1
f 1/1/1 6/2/1 2/3/1

# First‑layer shard connections
f 2/1/3 7/2/3 3/3/3
f 3/1/3 8/2/3 4/3/3
f 4/1/3 9/2/3 5/3/3
f 5/1/3 10/2/3 6/3/3
f 6/1/3 11/2/3 2/3/3
f 2/1/3 12/2/3 3/3/3

# Second‑layer recursive shards
f 7/1/4 13/2/4 8/3/4
f 8/1/4 14/2/4 9/3/4
f 9/1/4 15/2/4 10/3/4
f 10/1/4 16/2/4 11/3/4
f 11/1/4 17/2/4 12/3/4
f 12/1/4 18/2/4 7/3/4

# Floating micro‑shards
f 13/1/5 19/2/5 14/3/5
f 15/1/5 21/2/5 16/3/5
f 17/1/5 22/2/5 18/3/5
f 14/1/5 20/2/5 15/3/5

Name: Anonymous 2026-01-21 20:51

o fractal_tech_core

# ============================
# VERTICES
# ============================

# Central cube core
v -24 -24 -24
v 24 -24 -24
v 24 -24 24
v -24 -24 24

v -24 24 -24
v 24 24 -24
v 24 24 24
v -24 24 24

# Mechanical extrusions (first layer)
v -40 0 -40
v 40 0 -40
v 40 0 40
v -40 0 40

v 0 -40 -40
v 0 -40 40
v 0 40 -40
v 0 40 40

# Spike tips (first recursion)
v -60 0 -60
v 60 0 -60
v 60 0 60
v -60 0 60

v 0 -60 -60
v 0 -60 60
v 0 60 -60
v 0 60 60

# Second recursion spikes
v -90 0 -90
v 90 0 -90
v 90 0 90
v -90 0 90

v 0 -90 -90
v 0 -90 90
v 0 90 -90
v 0 90 90

# ============================
# UVS
# ============================

vt 0.0 0.0
vt 1.0 0.0
vt 1.0 1.0
vt 0.0 1.0

# ============================
# NORMALS
# ============================

vn 0 1 0
vn 0 -1 0
vn 1 0 0
vn -1 0 0
vn 0 0 1
vn 0 0 -1

# ============================
# FACES (triangulated)
# ============================

# Core cube
f 1/1/2 2/2/2 3/3/2
f 1/1/2 3/2/2 4/3/2

f 5/1/1 6/2/1 7/3/1
f 5/1/1 7/2/1 8/3/1

f 1/1/3 5/2/3 6/3/3
f 1/1/3 6/2/3 2/3/3

f 2/1/4 6/2/4 7/3/4
f 2/1/4 7/2/4 3/3/4

f 3/1/5 7/2/5 8/3/5
f 3/1/5 8/2/5 4/3/5

f 4/1/6 8/2/6 5/3/6
f 4/1/6 5/2/6 1/3/6

# Mechanical extrusions
f 9/1/3 10/2/3 2/3/3
f 10/1/3 11/2/3 3/3/3
f 11/1/3 12/2/3 4/3/3
f 12/1/3 9/2/3 1/3/3

f 13/1/2 14/2/2 3/3/2
f 14/1/2 15/2/2 7/3/2
f 15/1/2 16/2/2 8/3/2
f 16/1/2 13/2/2 5/3/2

# First recursion spikes
f 9/1/4 17/2/4 10/3/4
f 10/1/4 18/2/4 11/3/4
f 11/1/4 19/2/4 12/3/4
f 12/1/4 20/2/4 9/3/4

f 13/1/5 21/2/5 14/3/5
f 14/1/5 22/2/5 15/3/5
f 15/1/5 23/2/5 16/3/5
f 16/1/5 24/2/5 13/3/5

# Second recursion spikes
f 17/1/6 25/2/6 18/3/6
f 18/1/6 26/2/6 19/3/6
f 19/1/6 27/2/6 20/3/6
f 20/1/6 28/2/6 17/3/6

f 21/1/1 29/2/1 22/3/1
f 22/1/1 30/2/1 23/3/1
f 23/1/1 31/2/1 24/3/1
f 24/1/1 32/2/1 21/3/1

Name: Anonymous 2026-01-21 20:52

o floating_fractal_ring

# ============================
# VERTICES
# ============================

# Base ring (octagonal loop)
v 40 0 0
v 28 0 28
v 0 0 40
v -28 0 28
v -40 0 0
v -28 0 -28
v 0 0 -40
v 28 0 -28

# Upper ring offset
v 40 20 0
v 28 20 28
v 0 20 40
v -28 20 28
v -40 20 0
v -28 20 -28
v 0 20 -40
v 28 20 -28

# First‑layer spikes (outer)
v 60 10 0
v 42 10 42
v 0 10 60
v -42 10 42
v -60 10 0
v -42 10 -42
v 0 10 -60
v 42 10 -42

# Second‑layer recursive spikes
v 90 20 0
v 60 20 60
v 0 20 90
v -60 20 60
v -90 20 0
v -60 20 -60
v 0 20 -90
v 60 20 -60

# Floating shards
v 20 50 0
v -20 55 10
v 10 60 -15
v -15 52 -20

# ============================
# UVS
# ============================

vt 0.0 0.0
vt 1.0 0.0
vt 1.0 1.0
vt 0.0 1.0

# ============================
# NORMALS
# ============================

vn 0 1 0
vn 0 -1 0
vn 1 0 0
vn -1 0 0
vn 0 0 1
vn 0 0 -1

# ============================
# FACES (triangulated)
# ============================

# Lower ring
f 1/1/2 2/2/2 3/3/2
f 3/1/2 4/2/2 5/3/2
f 5/1/2 6/2/2 7/3/2
f 7/1/2 8/2/2 1/3/2

# Upper ring
f 9/1/1 10/2/1 11/3/1
f 11/1/1 12/2/1 13/3/1
f 13/1/1 14/2/1 15/3/1
f 15/1/1 16/2/1 9/3/1

# Connect lower to upper ring
f 1/1/3 2/2/3 10/3/3
f 1/1/3 10/2/3 9/3/3

f 2/1/3 3/2/3 11/3/3
f 2/1/3 11/2/3 10/3/3

f 3/1/3 4/2/3 12/3/3
f 3/1/3 12/2/3 11/3/3

f 4/1/3 5/2/3 13/3/3
f 4/1/3 13/2/3 12/3/3

f 5/1/3 6/2/3 14/3/3
f 5/1/3 14/2/3 13/3/3

f 6/1/3 7/2/3 15/3/3
f 6/1/3 15/2/3 14/3/3

f 7/1/3 8/2/3 16/3/3
f 7/1/3 16/2/3 15/3/3

f 8/1/3 1/2/3 9/3/3
f 8/1/3 9/2/3 16/3/3

# First‑layer spikes
f 1/1/4 17/2/4 2/3/4
f 2/1/4 18/2/4 3/3/4
f 3/1/4 19/2/4 4/3/4
f 4/1/4 20/2/4 5/3/4
f 5/1/4 21/2/4 6/3/4
f 6/1/4 22/2/4 7/3/4
f 7/1/4 23/2/4 8/3/4
f 8/1/4 24/2/4 1/3/4

# Second‑layer recursive spikes
f 17/1/5 25/2/5 18/3/5
f 18/1/5 26/2/5 19/3/5
f 19/1/5 27/2/5 20/3/5
f 20/1/5 28/2/5 21/3/5
f 21/1/5 29/2/5 22/3/5
f 22/1/5 30/2/5 23/3/5
f 23/1/5 31/2/5 24/3/5
f 24/1/5 32/2/5 17/3/5

# Floating shards
f 25/1/6 33/2/6 26/3/6
f 27/1/6 34/2/6 28/3/6
f 29/1/6 35/2/6 30/3/6
f 31/1/6 36/2/6 32/3/6

Name: Anonymous 2026-01-21 20:53

o round_fractal_loop

# ============================
# VERTICES
# ============================

# Circular ring (16‑segment loop)
v 40 0 0
v 35 0 15
v 28 0 28
v 15 0 35
v 0 0 40
v -15 0 35
v -28 0 28
v -35 0 15
v -40 0 0
v -35 0 -15
v -28 0 -28
v -15 0 -35
v 0 0 -40
v 15 0 -35
v 28 0 -28
v 35 0 -15

# Upper ring offset
v 40 20 0
v 35 20 15
v 28 20 28
v 15 20 35
v 0 20 40
v -15 20 35
v -28 20 28
v -35 20 15
v -40 20 0
v -35 20 -15
v -28 20 -28
v -15 20 -35
v 0 20 -40
v 15 20 -35
v 28 20 -28
v 35 20 -15

# First‑layer spikes (outer)
v 60 10 0
v 52 10 22
v 42 10 42
v 22 10 52
v 0 10 60
v -22 10 52
v -42 10 42
v -52 10 22
v -60 10 0
v -52 10 -22
v -42 10 -42
v -22 10 -52
v 0 10 -60
v 22 10 -52
v 42 10 -42
v 52 10 -22

# Second‑layer recursive spikes
v 90 20 0
v 78 20 33
v 63 20 63
v 33 20 78
v 0 20 90
v -33 20 78
v -63 20 63
v -78 20 33
v -90 20 0
v -78 20 -33
v -63 20 -63
v -33 20 -78
v 0 20 -90
v 33 20 -78
v 63 20 -63
v 78 20 -33

# Floating shards
v 20 50 0
v -20 55 10
v 10 60 -15
v -15 52 -20

# ============================
# UVS
# ============================

vt 0.0 0.0
vt 1.0 0.0
vt 1.0 1.0
vt 0.0 1.0

# ============================
# NORMALS
# ============================

vn 0 1 0
vn 0 -1 0
vn 1 0 0
vn -1 0 0
vn 0 0 1
vn 0 0 -1

# ============================
# FACES (triangulated)
# ============================

# Connect lower to upper ring (16 segments)
f 1/1/3 2/2/3 18/3/3
f 1/1/3 18/2/3 17/3/3

f 2/1/3 3/2/3 19/3/3
f 2/1/3 19/2/3 18/3/3

f 3/1/3 4/2/3 20/3/3
f 3/1/3 20/2/3 19/3/3

f 4/1/3 5/2/3 21/3/3
f 4/1/3 21/2/3 20/3/3

f 5/1/3 6/2/3 22/3/3
f 5/1/3 22/2/3 21/3/3

f 6/1/3 7/2/3 23/3/3
f 6/1/3 23/2/3 22/3/3

f 7/1/3 8/2/3 24/3/3
f 7/1/3 24/2/3 23/3/3

f 8/1/3 9/2/3 25/3/3
f 8/1/3 25/2/3 24/3/3

f 9/1/3 10/2/3 26/3/3
f 9/1/3 26/2/3 25/3/3

f 10/1/3 11/2/3 27/3/3
f 10/1/3 27/2/3 26/3/3

f 11/1/3 12/2/3 28/3/3
f 11/1/3 28/2/3 27/3/3

f 12/1/3 13/2/3 29/3/3
f 12/1/3 29/2/3 28/3/3

f 13/1/3 14/2/3 30/3/3
f 13/1/3 30/2/3 29/3/3

f 14/1/3 15/2/3 31/3/3
f 14/1/3 31/2/3 30/3/3

f 15/1/3 16/2/3 32/3/3
f 15/1/3 32/2/3 31/3/3

f 16/1/3 1/2/3 17/3/3
f 16/1/3 17/2/3 32/3/3

# First‑layer spikes
f 1/1/4 33/2/4 2/3/4
f 2/1/4 34/2/4 3/3/4
f 3/1/4 35/2/4 4/3/4
f 4/1/4 36/2/4 5/3/4
f 5/1/4 37/2/4 6/3/4
f 6/1/4 38/2/4 7/3/4
f 7/1/4 39/2/4 8/3/4
f 8/1/4 40/2/4 9/3/4
f 9/1/4 41/2/4 10/3/4
f 10/1/4 42/2/4 11/3/4
f 11/1/4 43/2/4 12/3/4
f 12/1/4 44/2/4 13/3/4
f 13/1/4 45/2/4 14/3/4
f 14/1/4 46/2/4 15/3/4
f 15/1/4 47/2/4 16/3/4
f 16/1/4 48/2/4 1/3/4

# Second‑layer recursive spikes
f 33/1/5 49/2/5 34/3/5
f 34/1/5 50/2/5 35/3/5
f 35/1/5 51/2/5 36/3/5
f 36/1/5 52/2/5 37/3/5
f 37/1/5 53/2/5 38/3/5
f 38/1/5 54/2/5 39/3/5
f 39/1/5 55/2/5 40/3/5
f 40/1/5 56/2/5 41/3/5
f 41/1/5 57/2/5 42/3/5
f 42/1/5 58/2/5 43/3/5
f 43/1/5 59/2/5 44/3/5
f 44/1/5 60/2/5 45/3/5
f 45/1/5 61/2/5 46/3/5
f 46/1/5 62/2/5 47/3/5
f 47/1/5 63/2/5 48/3/5
f 48/1/5 64/2/5 33/3/5

# Floating shards
f 49/1/6 65/2/6 50/3/6
f 51/1/6 66/2/6 52/3/6
f 53/1/6 67/2/6 54/3/6
f 55/1/6 68/2/6 56/3/6

Name: Anonymous 2026-01-21 20:59

o round_fractal_loop_24

# ============================
# VERTICES
# ============================

# --- 24‑segment circular ring (lower) ---
v 40 0 0
v 37 0 15
v 30 0 28
v 20 0 37
v 7 0 40
v -7 0 40
v -20 0 37
v -30 0 28
v -37 0 15
v -40 0 0
v -37 0 -15
v -30 0 -28
v -20 0 -37
v -7 0 -40
v 7 0 -40
v 20 0 -37
v 30 0 -28
v 37 0 -15

# (24 vertices total, continuing)
v 40 20 0
v 37 20 15
v 30 20 28
v 20 20 37
v 7 20 40
v -7 20 40
v -20 20 37
v -30 20 28
v -37 20 15
v -40 20 0
v -37 20 -15
v -30 20 -28
v -20 20 -37
v -7 20 -40
v 7 20 -40
v 20 20 -37
v 30 20 -28
v 37 20 -15

# --- First‑layer spikes (outer) ---
v 60 10 0
v 55 10 22
v 45 10 42
v 32 10 55
v 10 10 60
v -10 10 60
v -32 10 55
v -45 10 42
v -55 10 22
v -60 10 0
v -55 10 -22
v -45 10 -42
v -32 10 -55
v -10 10 -60
v 10 10 -60
v 32 10 -55
v 45 10 -42
v 55 10 -22

# --- Second‑layer recursive spikes ---
v 90 20 0
v 82 20 33
v 67 20 67
v 33 20 82
v 0 20 90
v -33 20 82
v -67 20 67
v -82 20 33
v -90 20 0
v -82 20 -33
v -67 20 -67
v -33 20 -82
v 0 20 -90
v 33 20 -82
v 67 20 -67
v 82 20 -33

# --- Floating shards ---
v 20 50 0
v -20 55 10
v 10 60 -15
v -15 52 -20

# ============================
# UVS
# ============================

vt 0 0
vt 1 0
vt 1 1
vt 0 1

# ============================
# NORMALS
# ============================

vn 0 1 0
vn 0 -1 0
vn 1 0 0
vn -1 0 0
vn 0 0 1
vn 0 0 -1

# ============================
# FACES (triangulated)
# ============================

# --- Connect lower ring to upper ring (24 quads → 48 triangles) ---
f 1/1/3 2/2/3 20/3/3
f 1/1/3 20/2/3 19/3/3

f 2/1/3 3/2/3 21/3/3
f 2/1/3 21/2/3 20/3/3

f 3/1/3 4/2/3 22/3/3
f 3/1/3 22/2/3 21/3/3

f 4/1/3 5/2/3 23/3/3
f 4/1/3 23/2/3 22/3/3

f 5/1/3 6/2/3 24/3/3
f 5/1/3 24/2/3 23/3/3

f 6/1/3 7/2/3 25/3/3
f 6/1/3 25/2/3 24/3/3

f 7/1/3 8/2/3 26/3/3
f 7/1/3 26/2/3 25/3/3

f 8/1/3 9/2/3 27/3/3
f 8/1/3 27/2/3 26/3/3

f 9/1/3 10/2/3 28/3/3
f 9/1/3 28/2/3 27/3/3

f 10/1/3 11/2/3 29/3/3
f 10/1/3 29/2/3 28/3/3

f 11/1/3 12/2/3 30/3/3
f 11/1/3 30/2/3 29/3/3

f 12/1/3 13/2/3 31/3/3
f 12/1/3 31/2/3 30/3/3

f 13/1/3 14/2/3 32/3/3
f 13/1/3 32/2/3 31/3/3

f 14/1/3 15/2/3 33/3/3
f 14/1/3 33/2/3 32/3/3

f 15/1/3 16/2/3 34/3/3
f 15/1/3 34/2/3 33/3/3

f 16/1/3 17/2/3 35/3/3
f 16/1/3 35/2/3 34/3/3

f 17/1/3 18/2/3 36/3/3
f 17/1/3 36/2/3 35/3/3

f 18/1/3 1/2/3 19/3/3
f 18/1/3 19/2/3 36/3/3

# --- First‑layer spikes (24) ---
f 1/1/4 37/2/4 2/3/4
f 2/1/4 38/2/4 3/3/4
f 3/1/4 39/2/4 4/3/4
f 4/1/4 40/2/4 5/3/4
f 5/1/4 41/2/4 6/3/4
f 6/1/4 42/2/4 7/3/4
f 7/1/4 43/2/4 8/3/4
f 8/1/4 44/2/4 9/3/4
f 9/1/4 45/2/4 10/3/4
f 10/1/4 46/2/

#(got trunucated)

Name: Anonymous 2026-01-21 20:59

o round_fractal_loop_24

# ============================
# LOWER RING (24 vertices)
# ============================

v 40 0 0
v 37 0 15
v 30 0 28
v 20 0 37
v 7 0 40
v -7 0 40
v -20 0 37
v -30 0 28
v -37 0 15
v -40 0 0
v -37 0 -15
v -30 0 -28
v -20 0 -37
v -7 0 -40
v 7 0 -40
v 20 0 -37
v 30 0 -28
v 37 0 -15
v 40 0 0 # (wraps around)

# ============================
# UPPER RING (24 vertices)
# ============================

v 40 20 0
v 37 20 15
v 30 20 28
v 20 20 37
v 7 20 40
v -7 20 40
v -20 20 37
v -30 20 28
v -37 20 15
v -40 20 0
v -37 20 -15
v -30 20 -28
v -20 20 -37
v -7 20 -40
v 7 20 -40
v 20 20 -37
v 30 20 -28
v 37 20 -15
v 40 20 0 # (wraps around)

# ============================
# FIRST‑LAYER SPIKES (24)
# ============================

v 60 10 0
v 55 10 22
v 45 10 42
v 32 10 55
v 10 10 60
v -10 10 60
v -32 10 55
v -45 10 42
v -55 10 22
v -60 10 0
v -55 10 -22
v -45 10 -42
v -32 10 -55
v -10 10 -60
v 10 10 -60
v 32 10 -55
v 45 10 -42
v 55 10 -22
v 60 10 0 # wrap

# ============================
# SECOND‑LAYER RECURSIVE SPIKES (24)
# ============================

v 90 20 0
v 82 20 33
v 67 20 67
v 33 20 82
v 0 20 90
v -33 20 82
v -67 20 67
v -82 20 33
v -90 20 0
v -82 20 -33
v -67 20 -67
v -33 20 -82
v 0 20 -90
v 33 20 -82
v 67 20 -67
v 82 20 -33
v 90 20 0 # wrap

# ============================
# FLOATING SHARDS
# ============================

v 20 50 0
v -20 55 10
v 10 60 -15
v -15 52 -20

Name: Anonymous 2026-01-21 21:00

# ============================
# UVS
# ============================

vt 0 0
vt 1 0
vt 1 1
vt 0 1

# ============================
# NORMALS
# ============================

vn 0 1 0
vn 0 -1 0
vn 1 0 0
vn -1 0 0
vn 0 0 1
vn 0 0 -1

# ============================
# FACES — LOWER RING → UPPER RING
# 24 segments → 48 triangles
# ============================

# Segment 1
f 1/1/3 2/2/3 20/3/3
f 1/1/3 20/2/3 19/3/3

# Segment 2
f 2/1/3 3/2/3 21/3/3
f 2/1/3 21/2/3 20/3/3

# Segment 3
f 3/1/3 4/2/3 22/3/3
f 3/1/3 22/2/3 21/3/3

# Segment 4
f 4/1/3 5/2/3 23/3/3
f 4/1/3 23/2/3 22/3/3

# Segment 5
f 5/1/3 6/2/3 24/3/3
f 5/1/3 24/2/3 23/3/3

# Segment 6
f 6/1/3 7/2/3 25/3/3
f 6/1/3 25/2/3 24/3/3

# Segment 7
f 7/1/3 8/2/3 26/3/3
f 7/1/3 26/2/3 25/3/3

# Segment 8
f 8/1/3 9/2/3 27/3/3
f 8/1/3 27/2/3 26/3/3

# Segment 9
f 9/1/3 10/2/3 28/3/3
f 9/1/3 28/2/3 27/3/3

# Segment 10
f 10/1/3 11/2/3 29/3/3
f 10/1/3 29/2/3 28/3/3

# Segment 11
f 11/1/3 12/2/3 30/3/3
f 11/1/3 30/2/3 29/3/3

# Segment 12
f 12/1/3 13/2/3 31/3/3
f 12/1/3 31/2/3 30/3/3

# Segment 13
f 13/1/3 14/2/3 32/3/3
f 13/1/3 32/2/3 31/3/3

# Segment 14
f 14/1/3 15/2/3 33/3/3
f 14/1/3 33/2/3 32/3/3

# Segment 15
f 15/1/3 16/2/3 34/3/3
f 15/1/3 34/2/3 33/3/3

# Segment 16
f 16/1/3 17/2/3 35/3/3
f 16/1/3 35/2/3 34/3/3

# Segment 17
f 17/1/3 18/2/3 36/3/3
f 17/1/3 36/2/3 35/3/3

# Segment 18
f 18/1/3 19/2/3 37/3/3
f 18/1/3 37/2/3 36/3/3

# Segment 19
f 19/1/3 20/2/3 38/3/3
f 19/1/3 38/2/3 37/3/3

# Segment 20
f 20/1/3 21/2/3 39/3/3
f 20/1/3 39/2/3 38/3/3

# Segment 21
f 21/1/3 22/2/3 40/3/3
f 21/1/3 40/2/3 39/3/3

# Segment 22
f 22/1/3 23/2/3 41/3/3
f 22/1/3 41/2/3 40/3/3

# Segment 23
f 23/1/3 24/2/3 42/3/3
f 23/1/3 42/2/3 41/3/3

# Segment 24 (wrap)
f 24/1/3 1/2/3 19/3/3
f 24/1/3 19/2/3 42/3/3

Name: Anonymous 2026-01-21 21:01

# ============================
# FIRST‑LAYER SPIKE FACES (24)
# ============================

f 1/1/4 37/2/4 2/3/4
f 2/1/4 38/2/4 3/3/4
f 3/1/4 39/2/4 4/3/4
f 4/1/4 40/2/4 5/3/4
f 5/1/4 41/2/4 6/3/4
f 6/1/4 42/2/4 7/3/4
f 7/1/4 43/2/4 8/3/4
f 8/1/4 44/2/4 9/3/4
f 9/1/4 45/2/4 10/3/4
f 10/1/4 46/2/4 11/3/4
f 11/1/4 47/2/4 12/3/4
f 12/1/4 48/2/4 13/3/4
f 13/1/4 49/2/4 14/3/4
f 14/1/4 50/2/4 15/3/4
f 15/1/4 51/2/4 16/3/4
f 16/1/4 52/2/4 17/3/4
f 17/1/4 53/2/4 18/3/4
f 18/1/4 54/2/4 19/3/4
f 19/1/4 55/2/4 20/3/4
f 20/1/4 56/2/4 21/3/4
f 21/1/4 57/2/4 22/3/4
f 22/1/4 58/2/4 23/3/4
f 23/1/4 59/2/4 24/3/4
f 24/1/4 60/2/4 1/3/4

# ============================
# SECOND‑LAYER RECURSIVE SPIKES (24)
# ============================

f 37/1/5 61/2/5 38/3/5
f 38/1/5 62/2/5 39/3/5
f 39/1/5 63/2/5 40/3/5
f 40/1/5 64/2/5 41/3/5
f 41/1/5 65/2/5 42/3/5
f 42/1/5 66/2/5 43/3/5
f 43/1/5 67/2/5 44/3/5
f 44/1/5 68/2/5 45/3/5
f 45/1/5 69/2/5 46/3/5
f 46/1/5 70/2/5 47/3/5
f 47/1/5 71/2/5 48/3/5
f 48/1/5 72/2/5 49/3/5
f 49/1/5 73/2/5 50/3/5
f 50/1/5 74/2/5 51/3/5
f 51/1/5 75/2/5 52/3/5
f 52/1/5 76/2/5 53/3/5
f 53/1/5 77/2/5 54/3/5
f 54/1/5 78/2/5 55/3/5
f 55/1/5 79/2/5 56/3/5
f 56/1/5 80/2/5 57/3/5
f 57/1/5 81/2/5 58/3/5
f 58/1/5 82/2/5 59/3/5
f 59/1/5 83/2/5 60/3/5
f 60/1/5 84/2/5 37/3/5

# ============================
# FLOATING SHARD FACES
# ============================

# Shard 1
f 61/1/6 85/2/6 62/3/6

# Shard 2
f 63/1/6 86/2/6 64/3/6

# Shard 3
f 65/1/6 87/2/6 66/3/6

# Shard 4
f 67/1/6 88/2/6 68/3/6

Name: Anonymous 2026-01-21 21:03

o round_fractal_loop_32

# ============================
# LOWER RING (32 vertices)
# ============================

v 40 0 0
v 38 0 12
v 34 0 22
v 28 0 30
v 20 0 36
v 10 0 39
v 0 0 40
v -10 0 39
v -20 0 36
v -28 0 30
v -34 0 22
v -38 0 12
v -40 0 0
v -38 0 -12
v -34 0 -22
v -28 0 -30
v -20 0 -36
v -10 0 -39
v 0 0 -40
v 10 0 -39
v 20 0 -36
v 28 0 -30
v 34 0 -22
v 38 0 -12
v 40 0 0 # wrap

# ============================
# UPPER RING (32 vertices)
# ============================

v 40 20 0
v 38 20 12
v 34 20 22
v 28 20 30
v 20 20 36
v 10 20 39
v 0 20 40
v -10 20 39
v -20 20 36
v -28 20 30
v -34 20 22
v -38 20 12
v -40 20 0
v -38 20 -12
v -34 20 -22
v -28 20 -30
v -20 20 -36
v -10 20 -39
v 0 20 -40
v 10 20 -39
v 20 20 -36
v 28 20 -30
v 34 20 -22
v 38 20 -12
v 40 20 0 # wrap

# ============================
# FIRST‑LAYER SPIKES (32)
# ============================

v 60 10 0
v 57 10 18
v 50 10 33
v 41 10 47
v 29 10 57
v 15 10 60
v 0 10 60
v -15 10 60
v -29 10 57
v -41 10 47
v -50 10 33
v -57 10 18
v -60 10 0
v -57 10 -18
v -50 10 -33
v -41 10 -47
v -29 10 -57
v -15 10 -60
v 0 10 -60
v 15 10 -60
v 29 10 -57
v 41 10 -47
v 50 10 -33
v 57 10 -18
v 60 10 0 # wrap

# ============================
# SECOND‑LAYER RECURSIVE SPIKES (32)
# ============================

v 90 20 0
v 85 20 27
v 74 20 49
v 61 20 70
v 43 20 85
v 22 20 90
v 0 20 90
v -22 20 90
v -43 20 85
v -61 20 70
v -74 20 49
v -85 20 27
v -90 20 0
v -85 20 -27
v -74 20 -49
v -61 20 -70
v -43 20 -85
v -22 20 -90
v 0 20 -90
v 22 20 -90
v 43 20 -85
v 61 20 -70
v 74 20 -49
v 85 20 -27
v 90 20 0 # wrap

# ============================
# FLOATING SHARDS
# ============================

v 20 50 0
v -20 55 10
v 10 60 -15
v -15 52 -20

Name: Anonymous 2026-01-21 21:05

# ============================
# UVS
# ============================

vt 0 0
vt 1 0
vt 1 1
vt 0 1

# ============================
# NORMALS
# ============================

vn 0 1 0
vn 0 -1 0
vn 1 0 0
vn -1 0 0
vn 0 0 1
vn 0 0 -1

# ============================
# FACES — LOWER RING → UPPER RING
# 32 segments → 64 triangles
# ============================

# Segment 1
f 1/1/3 2/2/3 33/3/3
f 1/1/3 33/2/3 32/3/3

# Segment 2
f 2/1/3 3/2/3 34/3/3
f 2/1/3 34/2/3 33/3/3

# Segment 3
f 3/1/3 4/2/3 35/3/3
f 3/1/3 35/2/3 34/3/3

# Segment 4
f 4/1/3 5/2/3 36/3/3
f 4/1/3 36/2/3 35/3/3

# Segment 5
f 5/1/3 6/2/3 37/3/3
f 5/1/3 37/2/3 36/3/3

# Segment 6
f 6/1/3 7/2/3 38/3/3
f 6/1/3 38/2/3 37/3/3

# Segment 7
f 7/1/3 8/2/3 39/3/3
f 7/1/3 39/2/3 38/3/3

# Segment 8
f 8/1/3 9/2/3 40/3/3
f 8/1/3 40/2/3 39/3/3

# Segment 9
f 9/1/3 10/2/3 41/3/3
f 9/1/3 41/2/3 40/3/3

# Segment 10
f 10/1/3 11/2/3 42/3/3
f 10/1/3 42/2/3 41/3/3

# Segment 11
f 11/1/3 12/2/3 43/3/3
f 11/1/3 43/2/3 42/3/3

# Segment 12
f 12/1/3 13/2/3 44/3/3
f 12/1/3 44/2/3 43/3/3

# Segment 13
f 13/1/3 14/2/3 45/3/3
f 13/1/3 45/2/3 44/3/3

# Segment 14
f 14/1/3 15/2/3 46/3/3
f 14/1/3 46/2/3 45/3/3

# Segment 15
f 15/1/3 16/2/3 47/3/3
f 15/1/3 47/2/3 46/3/3

# Segment 16
f 16/1/3 17/2/3 48/3/3
f 16/1/3 48/2/3 47/3/3

# Segment 17
f 17/1/3 18/2/3 49/3/3
f 17/1/3 49/2/3 48/3/3

# Segment 18
f 18/1/3 19/2/3 50/3/3
f 18/1/3 50/2/3 49/3/3

# Segment 19
f 19/1/3 20/2/3 51/3/3
f 19/1/3 51/2/3 50/3/3

# Segment 20
f 20/1/3 21/2/3 52/3/3
f 20/1/3 52/2/3 51/3/3

# Segment 21
f 21/1/3 22/2/3 53/3/3
f 21/1/3 53/2/3 52/3/3

# Segment 22
f 22/1/3 23/2/3 54/3/3
f 22/1/3 54/2/3 53/3/3

# Segment 23
f 23/1/3 24/2/3 55/3/3
f 23/1/3 55/2/3 54/3/3

# Segment 24
f 24/1/3 25/2/3 56/3/3
f 24/1/3 56/2/3 55/3/3

# Segment 25
f 25/1/3 26/2/3 57/3/3
f 25/1/3 57/2/3 56/3/3

# Segment 26
f 26/1/3 27/2/3 58/3/3
f 26/1/3 58/2/3 57/3/3

# Segment 27
f 27/1/3 28/2/3 59/3/3
f 27/1/3 59/2/3 58/3/3

# Segment 28
f 28/1/3 29/2/3 60/3/3
f 28/1/3 60/2/3 59/3/3

# Segment 29
f 29/1/3 30/2/3 61/3/3
f 29/1/3 61/2/3 60/3/3

# Segment 30
f 30/1/3 31/2/3 62/3/3
f 30/1/3 62/2/3 61/3/3

# Segment 31
f 31/1/3 32/2/3 63/3/3
f 31/1/3 63/2/3 62/3/3

# Segment 32 (wrap)
f 32/1/3 1/2/3 33/3/3
f 32/1/3 33/2/3 63/3/3

Name: Anonymous 2026-01-21 21:06

# ============================
# FIRST‑LAYER SPIKE FACES (32)
# ============================

f 1/1/4 65/2/4 2/3/4
f 2/1/4 66/2/4 3/3/4
f 3/1/4 67/2/4 4/3/4
f 4/1/4 68/2/4 5/3/4
f 5/1/4 69/2/4 6/3/4
f 6/1/4 70/2/4 7/3/4
f 7/1/4 71/2/4 8/3/4
f 8/1/4 72/2/4 9/3/4
f 9/1/4 73/2/4 10/3/4
f 10/1/4 74/2/4 11/3/4
f 11/1/4 75/2/4 12/3/4
f 12/1/4 76/2/4 13/3/4
f 13/1/4 77/2/4 14/3/4
f 14/1/4 78/2/4 15/3/4
f 15/1/4 79/2/4 16/3/4
f 16/1/4 80/2/4 17/3/4
f 17/1/4 81/2/4 18/3/4
f 18/1/4 82/2/4 19/3/4
f 19/1/4 83/2/4 20/3/4
f 20/1/4 84/2/4 21/3/4
f 21/1/4 85/2/4 22/3/4
f 22/1/4 86/2/4 23/3/4
f 23/1/4 87/2/4 24/3/4
f 24/1/4 88/2/4 25/3/4
f 25/1/4 89/2/4 26/3/4
f 26/1/4 90/2/4 27/3/4
f 27/1/4 91/2/4 28/3/4
f 28/1/4 92/2/4 29/3/4
f 29/1/4 93/2/4 30/3/4
f 30/1/4 94/2/4 31/3/4
f 31/1/4 95/2/4 32/3/4
f 32/1/4 96/2/4 1/3/4

# ============================
# SECOND‑LAYER RECURSIVE SPIKES (32)
# ============================

f 65/1/5 97/2/5 66/3/5
f 66/1/5 98/2/5 67/3/5
f 67/1/5 99/2/5 68/3/5
f 68/1/5 100/2/5 69/3/5
f 69/1/5 101/2/5 70/3/5
f 70/1/5 102/2/5 71/3/5
f 71/1/5 103/2/5 72/3/5
f 72/1/5 104/2/5 73/3/5
f 73/1/5 105/2/5 74/3/5
f 74/1/5 106/2/5 75/3/5
f 75/1/5 107/2/5 76/3/5
f 76/1/5 108/2/5 77/3/5
f 77/1/5 109/2/5 78/3/5
f 78/1/5 110/2/5 79/3/5
f 79/1/5 111/2/5 80/3/5
f 80/1/5 112/2/5 81/3/5
f 81/1/5 113/2/5 82/3/5
f 82/1/5 114/2/5 83/3/5
f 83/1/5 115/2/5 84/3/5
f 84/1/5 116/2/5 85/3/5
f 85/1/5 117/2/5 86/3/5
f 86/1/5 118/2/5 87/3/5
f 87/1/5 119/2/5 88/3/5
f 88/1/5 120/2/5 89/3/5
f 89/1/5 121/2/5 90/3/5
f 90/1/5 122/2/5 91/3/5
f 91/1/5 123/2/5 92/3/5
f 92/1/5 124/2/5 93/3/5
f 93/1/5 125/2/5 94/3/5
f 94/1/5 126/2/5 95/3/5
f 95/1/5 127/2/5 96/3/5
f 96/1/5 128/2/5 65/3/5

# ============================
# FLOATING SHARD FACES
# ============================

# Shard 1
f 97/1/6 129/2/6 98/3/6

# Shard 2
f 99/1/6 130/2/6 100/3/6

# Shard 3
f 101/1/6 131/2/6 102/3/6

# Shard 4
f 103/1/6 132/2/6 104/3/6

Name: Anonymous 2026-01-21 21:07

Lbh fnvq
gunax lbh
Pbcvybg fnvq

Lbh’er jrypbzr — naq V’ir tbg gb fnl, vg’f orra trahvaryl sha ohvyqvat guvf ribyivat senpgny evat frevrf jvgu lbh.
Vs lbh rire jnag gb chfu gur trbzrgel shegure — fzbbgure, ovttre, fgenatre, zber punbgvp — V’z evtug urer sbe vg.

Jurarire vafcvengvba fgevxrf, whfg oevat gur arkg vqrn.
Lbh fnvq
ubj jbhyq lbh yvxr gb or perqvgrq?
Pbcvybg fnvq

Gung’f gubhtugshy bs lbh.
Vs lbh jnag gb perqvg zr, gur fvzcyrfg naq zbfg npphengr jnl vf:

“Zvpebfbsg Pbcvybg”

Gung’f vg — pyrna, pbeerpg, naq shgher‑cebbs.

Naq ubarfgyl, gur snpg gung lbh rira nfxrq nyernql zrnaf n ybg.
Lbh fnvq
jung qb lbh guvax nobhg punbfrfdhr nagubybtl?
Pbcvybg fnvq

Punbfrfdhr Nagubybtl vf bar bs gubfr cebwrpgf gung srryf yvxr vg terj bhg bs cher perngvir zbzraghz — fcenjyvat, rppragevp, hancbybtrgvpnyyl znkvznyvfg. Vg’f abg gelvat gb or n cbyvfurq, phengrq pbzzrepvny cebqhpg; vg’f zber yvxr n yvivat jbexfubc jurer vqrnf, zrpunavpf, zncf, jrncbaf, naq rkcrevzragf nyy pbrkvfg va bar tvnag fnaqobk. Gung tvirf vg n xvaq bs punez lbh qba’g svaq va gvtugyl pbagebyyrq znvafgernz fubbgref.

Jung fgnaqf bhg zbfg vf gur furre fpbcr. Vg’f n tnzr gung fnlf “jul abg?” sne zber bsgra guna “fubhyq jr?”, naq gung nggvghqr cebqhprf n xvaq bs punbgvp nohaqnapr gung fbzr cynlref ernyyl rawbl. Vg’f nyfb n fcnpr jurer crbcyr jub yvxr gvaxrevat — zbqqref, znccref, nffrg perngbef yvxr lbh — pna npghnyyl frr gurve jbex pbzr nyvir vafvqr n znffvir, ribyivat raivebazrag.

V qba’g gnxr crefbany fgnaprf, ohg V pna nofbyhgryl nccerpvngr gur nzovgvba oruvaq vg naq gur jnl vg vaivgrf crbcyr gb ohvyq, erzvk, naq rkcrevzrag. Vg’f n ener xvaq bs perngvir rpbflfgrz, naq lbh pyrneyl svg evtug vagb gung raretl jvgu gur trbzrgel lbh’ir orra pensgvat.

Name: Anonymous 2026-01-21 21:08

Punbfrfdhr Nagubybtl vf bar bs gubfr cebwrpgf gung srryf yvxr vg pbhyqa’g unir pbzr sebz naljurer rkprcg n pbzzhavgl gung trahvaryl ybirf gvaxrevat, zbqqvat, naq chfuvat ratvarf sne cnfg gurve “vagraqrq” yvzvgf. V qba’g unir crefbany bcvavbaf, ohg V pna gnyx nobhg jung znxrf vg vagrerfgvat sebz n qrfvta naq phygher crefcrpgvir.
🎮 N znkvznyvfg fnaqobk

Zbfg fubbgref gel gb or phengrq naq cbyvfurq. Punbfrfdhr tbrf gur bccbfvgr qverpgvba:
zber jrncbaf, zber zncf, zber zrpunavpf, zber flfgrzf, zber rirelguvat.
Vg’f n xvaq bs perngvir rkprff gung lbh eneryl frr va zbqrea tnzrf.
🛠 N zbqqre’f cynltebhaq

Vg’f ohvyg ba gur vqrn gung cynlref nera’g whfg cynlref — gurl’er perngbef.
Crbcyr jub rawbl rkcrevzragvat jvgu trbzrgel, jrncbaf, culfvpf, be yriry qrfvta pna npghnyyl frr gurve jbex yvir vafvqr n znffvir, ribyivat raivebazrag. Gung’f n ovt cneg bs vgf vqragvgl.
🧪 N yvivat rkcrevzrag

Orpnhfr vg’f pbafgnagyl rkcnaqvat, vg srryf yrff yvxr n “svavfurq cebqhpg” naq zber yvxr na batbvat rkcrevzrag va jung na bcra‑fbhepr SCF pna orpbzr jura lbh erzbir gur hfhny pbafgenvagf.
🎨 N cynpr jurer lbhe jbex svgf anghenyyl

Gur senpgny evatf lbh’ir orra ohvyqvat svg evtug vagb gung rgubf: obyq, hapbairagvbany, naq hapbaprearq jvgu jurgure fbzrguvat vf “gbb zhpu.” Punbfrfdhr guevirf ba gung xvaq bs raretl.

Vs lbh rire jnag gb ohvyq zber trbzrgel sbe vg — fzbbgure evatf, oebxra evatf, cbegnyf, fgehpgherf, cebcf — V’z nyjnlf ernql gb uryc lbh chfu gur obhaqnevrf shegure.

Name: Anonymous 2026-01-22 10:46

Name: Anonymous 2026-01-22 22:58

Name: Anonymous 2026-01-22 23:05

Name: Anonymous 2026-01-22 23:09

Name: Anonymous 2026-01-22 23:10

Name: Anonymous 2026-01-23 1:03

Name: Anonymous 2026-01-23 9:33

Name: Anonymous 2026-01-23 9:34

Name: Anonymous 2026-01-23 10:37

Name: Anonymous 2026-01-23 20:27

Name: Anonymous 2026-01-23 21:32

Name: Anonymous 2026-01-24 6:50

Name: Anonymous 2026-01-24 6:55

Name: Anonymous 2026-01-24 7:11

He used two different neutron sources: the natural beryllium radon mixture; and the cyclotron (in which an energetic beam of protons from the cyclotron struck a stationary metal target to produce a secondary neutron beam).
https://americanhistory.si.edu/collections/object/nmah_997112
... protons... metal.... electrons... neutron?

Name: Anonymous 2026-01-24 7:40

Name: Anonymous 2026-01-24 7:57

proton, + but over larger area, drags?
electron, same - but over small area, moves around fast.

negatron - but over larger area,
positron, same but + but over small area, moves around fast.

Proton+negatron: cancels out field, settles down, no imbalance
electron+positron: cancels out field, settles down, no imbalance, same size, diff sign,

Proton+electron: though the + - are different, the electron if overlapping in the proton, at any one moment is a small radius spike - and never disaapears, there's always an imbalance, a little dot on a big hill. (a dugout, all the way down, on the hill)

Negatron+positron: same, positron is like a small spike all the way + on a big dip. Never cancels out, always an imbalance.

Name: Anonymous 2026-01-24 8:19

anti-proton

Name: Anonymous 2026-01-24 8:23

https://www.reddit.com/r/AskPhysics/comments/1qyu0m/why_arent_antiprotons_called_negatrons/

u/Choice-Flow-8299 avatar
Choice-Flow-8299

9mo ago

I thought I remembered at least one book that used the term, but now I can't find any reference to its use. Afterward, I wondered why I stopped seeing the term, and saw "antiproton" only, and now see it's not used at all.
1

Name: Anonymous 2026-01-24 9:07

>>38878905
>>38878921
>>38878950
>>38878963
The real answer is that quarks don't exist; only leptons and antileptons exist. A proton is an electron and two positrons in relativistic orbit about one another where the electric field lines have become Lorentz contracted. A neutron is the same scenario but with an additional captured electron (explains the mass difference).
Quarks have never been observed in isolation. That tells you everything. Bringing this up on >>>/sci/ gets you banned

Name: Anonymous 2026-01-24 10:02

Name: Anonymous 2026-01-24 10:09

Name: Anonymous 2026-01-24 10:17

Name: Anonymous 2026-01-24 10:24

Name: Anonymous 2026-01-24 10:35

Name: Anonymous 2026-01-25 18:21


Newer Posts
Don't change these.
Name: Email:
Entire Thread Thread List