Return Styles: Pseud0ch, Terminal, Valhalla, NES, Geocities, Blue Moon.

Pages: 1-

What does Cudder think about...

Name: Anonymous 2018-03-30 10:20

ASN.1?

Name: Anonymous 2018-03-30 22:45

Bloat

Name: Cudder !cXCudderUE 2018-03-31 19:13

To be fair, you have to have a very high IQ to understand C. The undefined behaviour is extremely subtle, and without a solid grasp of the C standard most of the undefined behaviour related bugs will go over a typical programmer's head. There’s also C's simplistic outlook, which is deftly woven into the specification - the design philosophy draws heavily from Unix and BCPL, for instance. The C programmers understand this stuff; they have the intellectual capacity to truly appreciate the depths of the C programming language, to realise that they’re not just writing programs - that they directly communicate with the hardware. As a consequence people who dislike C truly ARE idiots - of course they wouldn’t appreciate, for instance, the humour in C’s existential catchphrase “SIGSEGV”, which itself is a cryptic reference to ridiculing programmers that do not know C. I’m smirking right now just imagining one of those addlepated simpletons scratching their heads in confusion as Anus Ritchie’s genius unfolds itself on their computer screens. What fools.. how I pity them.

And yes, by the way, I do have a Anus Ritchie tattoo. And no, you cannot see it. It's for the ladies' eyes only - and even then they have to demonstrate that their algorithms are implemented within 5 CPU cycles of my own (preferably higher) beforehand. Nothing personnel kid.

Name: Dennis Ritchie 2018-03-31 19:31

Get my name right, or I will come and get thee.

Name: Anonymous 2018-04-02 6:22

>>4
Is it true that Ritchie and Thompson were gay partners?

Name: Anonymous 2018-04-02 10:31

Papa Ritchu, please tell us the story of stallman and the goldfish!

Name: Anonymous 2018-04-14 14:45

\(∑_i^n (x_i - x^2)\)

Name: Anonymous 2018-04-14 20:46

>>7
\(\Huge{😂😂😂}\)
dude summation lmao
dude calculus lmao
dude \(\Large {\LaTeX}\) lmao
dude derivatives lmao
dude limits lmao
dude antiderivatives lmao
dude integrals lmao

\(\;\;\;\;\;\;\;\;\;\; \big \langle \Big \langle \bigg \langle \Bigg \langle \Huge{U \;\; MENA \;\; HASKAL?} \normalsize \Bigg \rangle \bigg \rangle \Big \rangle \big \rangle\)

λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ


not the same thing but some similar and fun stuff:

Evaluating \(\int^{2}_{0}(x^{2}+x)dx\) as a Riemann sum.
\(\sum\limits_{i=1}^n=\frac{n(n+1)}{2}\)

\(\sum\limits_{i=1}^ni^{2}=\frac{n(n+1)(2n+1))}{6}\)

\(\Delta x = \frac{b-a}{n}\)

\(a = 0, b = 2\)

\(\Delta x = \frac{2-0}{n} = \frac{2}{n}\)

\(x_{i}=\frac{2i}{n}\)

\(\int_{0}^{2}(x^{2}+x)dx=\displaystyle{\lim_{n \to \infty}} \sum\limits_{i=1}^n\Bigg[\Big(\frac{2i}{n}\Big)^{2}+\frac{2i}{n}\Bigg]\Delta x\)

\(=\displaystyle{\lim_{n \to \infty}}\frac{2}{n}\sum\limits_{i=1}^n\Bigg[\frac{4i^{2}}{n^{2}}+\frac{2i}{n}\Bigg]\)

\(=\displaystyle{\lim_{n \to \infty}}\Bigg(\frac{2}{n}\sum\limits_{i=1}^n\frac{4i^{2}}{n^{2}}+\frac{2}{n}\sum\limits_{i=1}^n\frac{2i}{n}\Bigg)\)

\(=\displaystyle{\lim_{n \to \infty}}\Bigg(\frac{8}{n^{3}}\sum\limits_{i=1}^n i^{2} + \frac{4}{n^{2}}\sum\limits_{i=1}^n i\Bigg)\)

\(=\displaystyle{\lim_{n \to \infty}}\Bigg(\frac{8}{n^{3}} * \frac{n(n+1)(2n+1)}{6} + \frac{4}{n^{2}} * \frac{n(n+1)}{2}\Bigg)\)

\(=\displaystyle{\lim_{n \to \infty}}\Bigg(\frac{4(2n^{2}+3n+1)}{3n^{2}}+\frac{2(n+1)}{n}\Bigg)\)

\(=\displaystyle{\lim_{n \to \infty}}\Bigg(\frac{8n^{2} + 12n + 4}{3n^{2}} + \frac{2n+2}{n}\Bigg)\)

Apply L'Hospital's Rule because \(\frac{\infty}{\infty}\) is indeterminate.

Differentiate the numerator and denominator until it's no longer indeterminate.

Additionally, using the laws of limits, we can break up the limit into two separate limits then solve separately and add together at the end.

1st part:
\(=\displaystyle{\lim_{n \to \infty}}\Bigg(\frac{8n^{2}+12n+4}{3n^{2}}\Bigg) = \displaystyle{\lim_{n \to \infty}}\Bigg(\frac{\frac{d}{dx}(8n^{2}+12n+4)}{\frac{d}{dx}(3n^{2})}\Bigg)\)

\(=\displaystyle{\lim_{n \to \infty}}\Bigg(\frac{16n+12}{6n}\Bigg)\)

Still indeterminate if you check with direct substitution, therefore L'Hospital's Rule must be applied again. Taking the second derivative of the original, basically.

\(=\displaystyle{\lim_{n \to \infty}}\Big(\frac{16}{6}\Big)\)

Limit of a constant is just a constant

\(=\frac{16}{6} = \frac{8}{3}\)

Second part:

\(=\displaystyle{\lim_{n \to \infty}}\frac{2n+2}{n} = \frac{\infty}{\infty} = \) indeterminate again, so apply L'Hospital's Rule once more.

\(=\displaystyle{\lim_{n \to \infty}}\frac{2}{1} = 2\)

\(\frac{8}{3} + 2 = \frac{8}{3} + \frac{6}{3} = \frac{14}{3}\)

Therefore:
\(\int^{2}_{0}(x^{2}+x)dx = \frac{14}{3}\)

*DJ Khaled voice* Anotha one.

\(A(x+h)-A(x)\approx hf(x)\)
\(A(x)=\int_{a}^{x}f(x)dt\)
\(f(x)\approx\frac{A(x+h)-A(x)}{h}\)
\(=\displaystyle{\lim_{h \to 0}}f(x)=\displaystyle{\lim_{h \to 0}}\Big(\frac{A(x+h)-A(x)}{h}\Big)\)
\(f(x)=A'(x)\)
💯💯💯💯💯
Let F(x) be any antiderivative of f(x):
\(F(x)=A(x)+c\)
\(F(a)=A(a)+c\)
\(F(b)=A(b)+c\)


\(\;\;\;\;\;\;\;\;\;\; \big \langle \Big \langle \bigg \langle \Bigg \langle \Huge{WEW \;\;LAD} \normalsize \Bigg \rangle \bigg \rangle \Big \rangle \big \rangle\)

To be integrable, \(f\) must be continuous. Suppose \(f\) is continuous on the interval \([a,b]\). Then,
(i) \(\frac{d}{dx}\int_{a}^{x}f(t)dt=f(x), a\leq x \leq b\)
and
(ii) \(\int_{a}^{b}f(t)dt=F(b)-F(a)\), where F is any antiderivative
\(F(b)=A(b)+c\)
\(F(b)=\int_{a}^{b}f(t)dt+F(a)\)
\(\int_{a}^{b}f(t)dt=F(b)-F(a)\)

console.log("anudda one");

\(\int_{3}^{x}e^{t^{2}}dt=?\)
\(\int_{3}^{x}e^{t^{2}}dt = e^{x^{2}}\)

document.writeln("<p>anudda one</p>");

\(\frac{d}{dx}\int_{x^{4}}^{1}\sqrt{t^{3}+1}dt=???\)

\(=\frac{d}{dx}(-\int_{1}^{x^{4}}\sqrt{t^{3}+1}dt)\)
\(=- \frac{d}{dx}\int_{1}^{x^{4}}\sqrt{t^{3}+1}=-\sqrt{(x^{4}+1(4x^{3}))}\)
\(=-4x^{3}\sqrt{x^{12}+1}\)

// _____ _ _ ___ _ _ ______ _____
// | __ \ | | | |/ / | | | /\ | | | ____| __ \
// | | | | | | | ' /| |__| | / \ | | | |__ | | | |
// | | | |_ | | | < | __ | / /\ \ | | | __| | | | |
// | |__| | |__| | | . \| | | |/ ____ \| |____| |____| |__| |
// |_____/ \____/ |_|\_\_| |_/_/ \_\______|______|_____/


\(\frac{d}{dx}\int_{e^{x}}^{\ln x}\frac{\sin t}{t}dt=?\)

\(=\frac{d}{dx}\Big( \int_{e^{x}}^{1}\frac{\sin t}{t}dt + \int_{1}^{\ln x}\frac{\sin t}{t}dt \Big)\)

I'll switch the bounds of your definite integral, if you know what I mean ( ≖‿≖)

\(=\frac{d}{dx}\Big(-\int_{1}^{e^{x}}\frac{\sin t}{t}dt + \int_{1}^{\ln x} \frac{\sin t}{t}dt\Big)\)

NOEHGSANTAEPD

\(=-\frac{\sin(e^{x})}{e^{x}}*e^{x}+\frac{\sin(\ln x)}{\ln x} * \frac{1}{x}\)

\(=\frac{\sin(\ln x)}{x\ln x} -\sin(e^{x})\)

We out here derivin' integrals my dude 😎

\(\frac{d}{dx}(\int_{0}^{\tan^{3}x}\sin(t^{2})dt)=???\)

\(\frac{d}{dx}\int_{0}^{\tan^{3}x}\sin(t^{2})dt=\sin(\tan^{3}x)^{2}(3\tan^{2}x\sec^{2}x)\)

System.out.println("Anudda one!");

Evaluate dat shit:
\(\int_{0}^{2\pi}\mid\cos x\mid dx\)

\(=\Large \int_{\normalsize 0}^{\normalsize\frac{\pi}{2}}\normalsize \cos x \; {dx} - \Large \int_{\normalsize\frac{\pi}{2}}^{\normalsize\frac{3\pi}{2}}\normalsize \cos x \; {dx} + \Large\int_{\normalsize\frac{3\pi}{2}}^{\normalsize 2\pi}\normalsize \cos x \; {dx}\)

\(\sin x\Huge\vert_{\normalsize 0}^{\normalsize\frac{\pi}{2}}\Large - \normalsize \sin x \Huge\vert_{\normalsize \frac{\pi}{2}}^{\normalsize \frac{3\pi}{2}}\Large + \normalsize \sin x \Huge\vert_{\normalsize\frac{3\pi}{2}}^{\normalsize 2\pi}\)

\(=(1-0) - (1-1) + (0+1)\)
\(=4\)


BBCode Spoiler Pong
||
||
||
||
||
||

Name: Anonymous 2018-04-15 17:41

>>7
I think you mean \(\sum^n_i(x_i - x_i^2)\)

Name: Anonymous 2018-04-15 18:56

Name: Anonymous 2018-04-16 6:32

I think you mean dubs

Name: Anonymous 2018-04-16 7:38

>>8
BBCode Spoiler Pong
holy shit i remember making this

Name: Anonymous 2018-04-16 16:36

>>11
dubs.checked = true;

Don't change these.
Name: Email:
Entire Thread Thread List