Return Styles: Pseud0ch, Terminal, Valhalla, NES, Geocities, Blue Moon. Entire thread

Pi Formula

Name: Anonymous 2018-10-08 21:55

Can you prove that
Pi = lim 2*(2^n / (n!/k!/(n/2)!))^2
[as n approaches infinity]


???

Name: Anonymous 2018-10-08 21:56

! - factorial
^ - pow
lim means the bigger is n, the closer it gets to the value on the left.

Name: Anonymous 2018-10-08 22:11

k = n/2

Name: Anonymous 2018-10-09 0:11

The correct answer is:
   
no
   

Name: Anonymous 2018-10-09 0:23

import math

def bin(n,k):
return math.factorial(n)/math.factorial(k)/math.factorial(n-k)

def pi(n):
v = math.pow(2.0, n)/bin(n,n/2)
return v*v*2/n

print("%f\n" % pi(256)) #prints 3.147735

Name: Anonymous 2018-10-09 0:35

>>3
so like (n! / k!^2)

n=2
2* (2^2 / (2! / 1!^2)) ^2
2* (4/ 2)^2 = 8

n=4
2* (4^2 / (4! / 2!^2)) ^2
2* (16/ (24/4))^2 =
2* (16/ 6)^2 = 14.222 (less than 16!?)

Name: Anonymous 2018-10-09 0:53

for lim n
sqrt(pi / 2) = (2^n / (n!/k!/(n/2)!)
sqrt(pi / 2) * (n! / (1/2 n)! ^2) = 2^n

nth_rt( sqrt(pi / 2) * (n! / (1/2 n)! ^2) ) = 2

Name: Anonymous 2018-10-09 1:33

So nth_rt( n! / k!^2 ) = 2 * 1/nth_rt(sqrt(pi/2))?

Name: Anonymous 2018-10-09 1:49

lim n nth_rt(sqrt(pi/2))? ~ 1.000__1

lim n (n! / 1/2n!^2) = [1*5] * 2*6 * 3*7 * [4*8] / [1*1] * 2*2 * 3*3 * [4*4] ~2.000__1

Name: Anonymous 2018-10-09 1:58

Is it false?

lim n nth_rt(2.000__1) != 2* 1/1.000__1

Name: Anonymous 2018-10-09 4:04

Try again
lim n (n! / 1/2n!^2) = [1*5] * 2*6 * 3*7 * [4*8] / [1*1] * 2*2 * 3*3 * [4*4] ~2.000__1 ^n (-x?) ?

lim n nth_rt(2.000__1 ^n) ~= 2* 1/1.000__1

Name: Anonymous 2018-10-09 4:09

Pi Formula: \(\frac{22}{7}\)

Name: Anonymous 2018-10-09 6:50

>>12
Might as well say \(\frac{314}{100}\)

Name: Anonymous 2018-10-09 7:10

You're all mental midgets. It was proven already in 1738 by Moivre, whose education consisted mainly of rote memorizing Bible:
https://en.wikipedia.org/wiki/Normal_distribution#History

and you can't prove it using modern education.

Name: Anonymous 2018-10-09 8:03

π = 4(½!)²

Name: Anonymous 2018-10-09 8:12

>>14
mental midgets
Admit your role!

Name: Anonymous 2018-10-09 8:50

>>15
using gamma function is cheating.

Name: Anonymous 2018-10-09 15:06

        ┌─────
        │ ∞
π = │⎲
        │⎳6/n²
       ⎷ n=1

Name: Anonymous 2018-10-09 18:16

>>18
[math]

Name: Anonymous 2018-10-09 19:20

[math] my anus

Name: Anonymous 2018-10-09 19:41

>>18
wat

Name: Anonymous 2018-10-09 19:50

>>21
Looks like a non\(\TeX\) way of trying to restate the Basel problem.

Name: Anonymous 2018-10-09 21:15

>>18
Tried copy pasting that into text editor, and it crashed.
Math is hard.

Name: Anonymous 2018-10-09 21:40

>>18
you tried

Name: Anonymous 2018-10-10 1:04

define Pi = lim 2*(2^n / (n!/k!/(n/2)!))^2
Pi == Pi

Name: Anonymous 2018-10-10 1:22

Is this a new one? Does it work?
define Pi =
nth_rt( 2 ^ floor(n/2) * 3 ^ floor(n/3) * 5 ^ floor(n/5) * ...)

Name: Anonymous 2018-10-10 5:16

>>19
requires javascript

Name: Anonymous 2018-10-11 10:57

>>8
worth checking
x = 2^5
x^(1/5) = 2
(5x)^(1/5) = 2.759..
(5x)^(1/5) * (1/ 5^(1/5)) = 2

Name: Anonymous 2018-10-11 11:30

>>26
probably needs to be like 4nth_rt
define testFact =
2 ^ (floor(n/2) + sum([1:floor(log(2,n)] .- 1)) * 3 ...)

factx =
2 ^ (floor(n/2) + floor(n/2^2) + floor(n/2^3) + ..n/log(2,n)) * ...

Newer Posts
Don't change these.
Name: Email:
Entire Thread Thread List